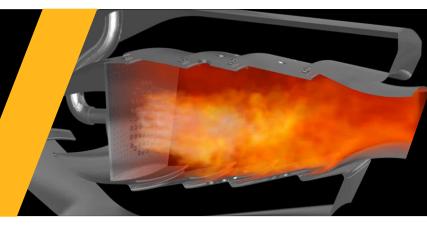
ANSYS CFD 2022R2 新功能介绍


新科益系统与咨询(上海)有限公司

Efficient and Sustainable Fluent Simulations

Py//nsys

Unleash the Full Power of GPUs for Fluent Simulations

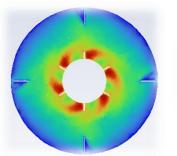
- Reduce simulation solve time and total power consumption with a native multi-GPU solver in Fluent.
- ✓ 1 GPU ≈ 400 CPUs.
- ✓ Support for transient simulations, including high-fidelity turbulent flows and moving parts.
- Built on the same numerical methods as the Fluent CPU solver, providing users virtually identical results.

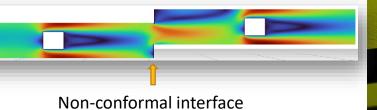
Harness the Power of Fluent in Python to Craft Customized Solutions

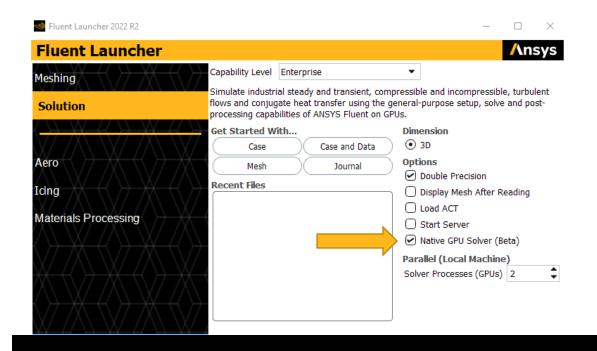
- ✓ Build customized solutions meeting your unique needs for more efficient CFD simulations
- Interface with Fluent pythonically to automate its capabalities and seamlessly connect with other technologies
- ✓ Access to all Fluent TUI commands from pre- to post-processing in your python scripts
- Extract solution fields and leverage python libraries for more sophisticated data analyses

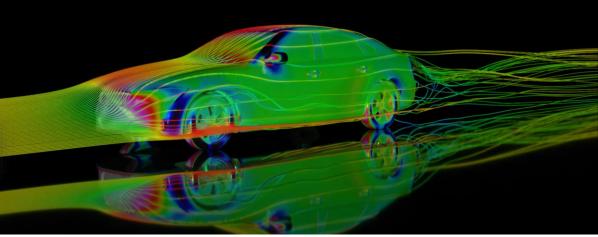
Accurate and Validated Hydrogen Generation and Consumption Models

- ✓ Solutions from production to consumption
- Simulate the generation of green hydrogen through electrolysis with a new Proton Exchange Membrane (PEM) model (beta)
- Validated hydrogen and hydrogen blend combustion models with accurate prediction of flashback

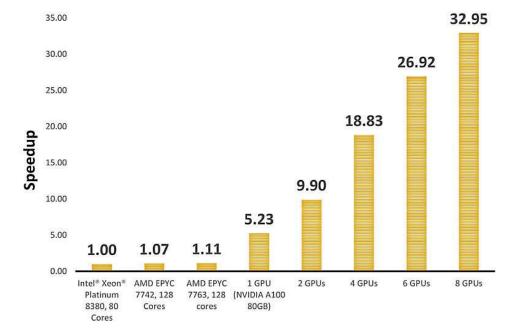


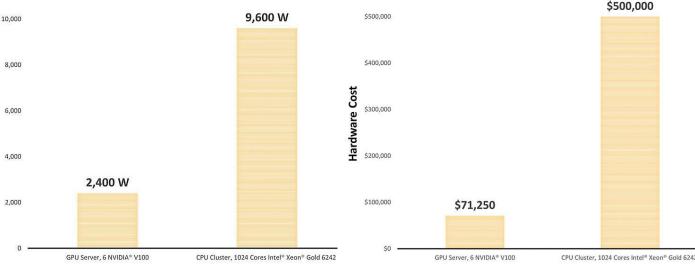

Native Multi-GPU Solver


Native Multi-GPU Solver


- Multi-GPU Solver (beta)
 - Run Fluent simulations natively on multiple GPUs
- New Modeling Capabilities
 - Transient flows
 - Scale-resolving simulations (SRS)
 - Moving reference frame (MRF)
 - Non-conformal mesh interfaces
 - Porous media
 - For full list of features visit Fluent documentation

Steady-state mixer with MRF + GEKO



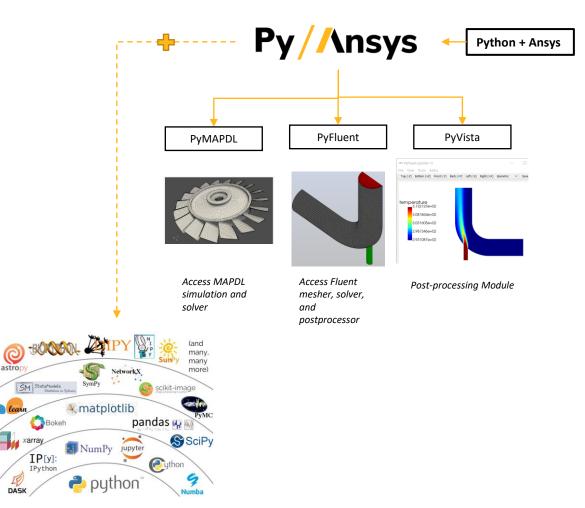


32X Simulation Speed Up

- Running Fluent simulations natively on multiple GPUs can increase performance
- A single NVIDIA A100 GPU achieved more than 5X greater performance than a cluster with 80 Intel[®] Xeon[®] Platinum 8380 Cores
- Power Consumption Reduction
 - Running simulations natively on multiple GPUs can have significant power consumption savings
 - CPU cluster with 1024 Intel[®] Xeon[®] Gold 6242 cores
 - Power consumption = 9,600 W
 - GPU server with 6 NVIDIA[®] V100
 - Power consumption = 2,400 W
- 7X Hardware Cost Reduction

Consumption

ower


PyFluent

PyFluent - Opensource Accessibility for Fluent

• PyAnsys

- PyAnsys is a set of technologies that allows the user to interface with Fluent, MAPDL, AEDT and other Ansys products pythonically.
- Ansys's commitment to open-source where we provide Python libraries that expose Ansys technologies in the Python ecosystem through APIs and interfaces that are clear, concise, and maintainable.
- Enabling Users To Do:
 - Flexible Automation: Democratize powerful capabilities offered by Ansys through scripting
 - Flexible Distribution : Connect Ansys and Open-Source technologies in a seamless manner
 - Broader Technology Integration: Integrate Ansys physics capabilities easily with AI/ML

PyFluent - Opensource Accessibility for Fluent

PyFluent Capabilities

- Use Fluent within, or alongside, any other Python environment
 - Conjunction with other Ansys Python libraries/packages
 - With other external Python products.
- Access to all Fluent TUI commands for meshing, solving, and postprocessing
- Extract post processing (field) data and use with standard Python tools
 - PyVista, NumPy, SciPy, Matplotlib, etc...
- Build custom workflows

/define> materials	
/define/materials> change-create	
<pre>material-name> air material name [air] air air is a fluid change Density? [no] yes</pre>	
Density	
<pre>methods: (constant ideal-gas incompressible-idea expression compressible-liquid user-defined) new method [constant] ideal-gas no data required.</pre>	
change Cp (Specific Heat)? [no] no change Thermal Conductivity? [no] no change Viscosity? [no] no	

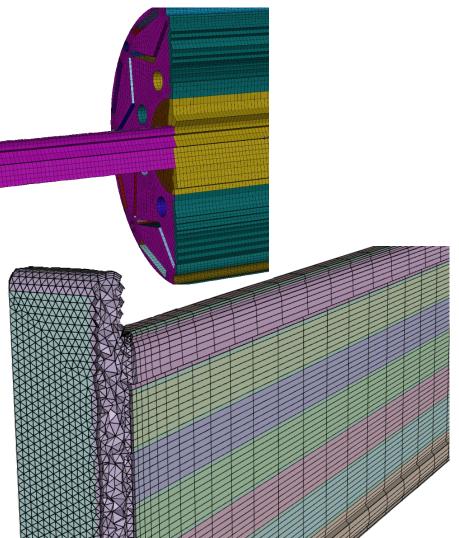
PyFluent (TUI API)

session.tui.solver.define.materials.change_create('air','air','yes','ideal-gas','no','no','no','no','no','no')

PyFluent (Settings API) [beta]

root.setup.materials.fluid['air']={'density':{'option':'ideal-gas'}}

Efficient Structured Meshing

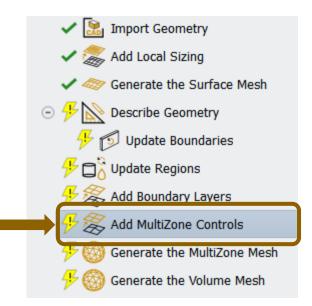

Efficient Structured Meshing – Watertight Geometry Workflow

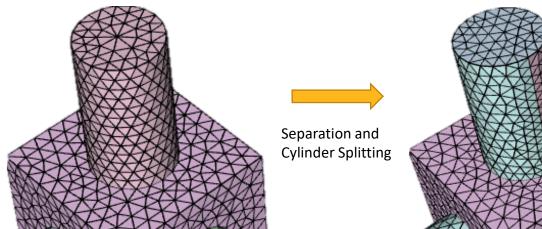
MultiZone provides efficient swept / extruded meshes

- Now integrated into the Watertight Geometry workflow

Mix MultiZone and Unstructured meshing

- Generate the MultiZone Mesh task before remaining volume fill
- Regions that are connected will be meshed at the same time
 - If all regions have controls and all regions are selected, Generate the Volume mesh task will be hidden
- Volume meshing of remaining regions
 - Conformal connections between Multizone and Tet-Hexcore
 - Unless defined as non-conformal in CAD
 - Non conformal connections between Multizone and Poly / Poly-Hex

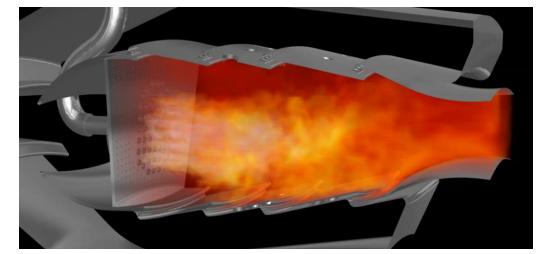


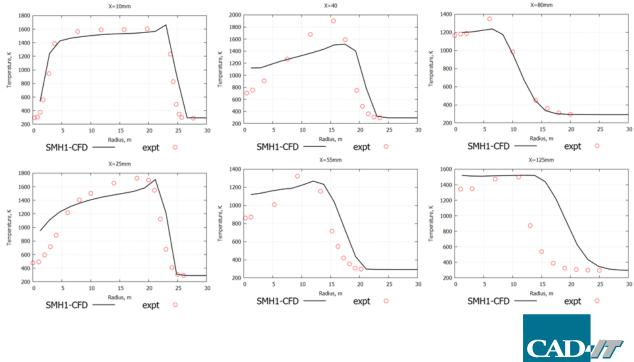


Efficient Structured Meshing Capabilities

Main Operations

- Separate Zones
 - Based on Face Zones or Regions (body labels)
 - Separation Angle
- Split Cylinders
 - Based on Face Zones or Regions (body labels)
 - Split will also create Edge labels around split faces
- Separated faces are merged back after volume meshing

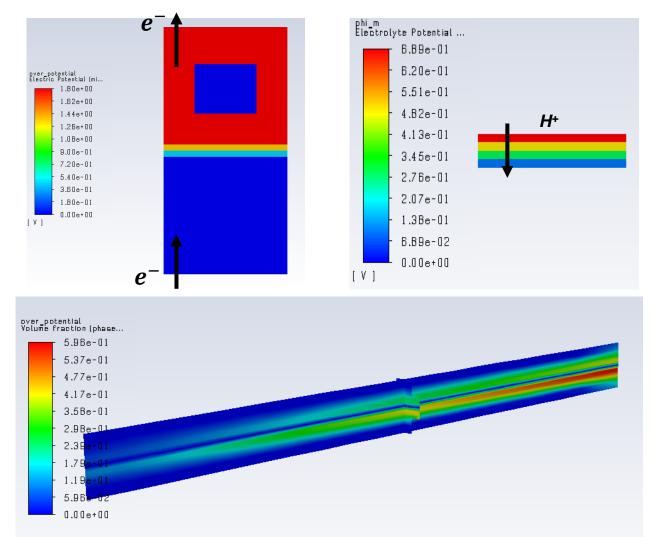

Hydrogen



Validated Hydrogen Combustion Models

Hydrogen Combustion

- Validated hydrogen and hydrogen blend combustion models
 - Accurate prediction of flashback
- Accurate combustion simulations using finite rate (FR) and Flamelet-Generated Manifold (FGM) combustion models
- Ability to include larger reaction mechanisms in the simulations
- Scalable performance on HPC for combustion modeling

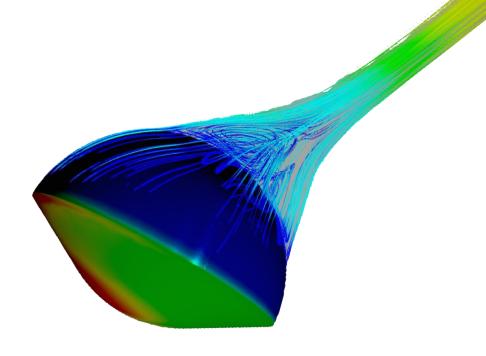


Green Hydrogen Production – PEM Electrolysis

• PEM Electrolysis

- New method to model green hydrogen production through electrolysis with the proton exchange membrane (PEM) model (beta)
 - Multiphase modeling integrated with electrochemistry solver
 - Modeling of porous electrodes in high-temperature PEM electrolyzer
- Meshing conformal/nonconformal meshing for complex electrolyzer geometries

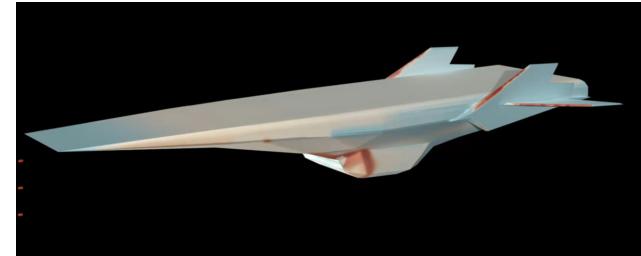
Gas phase volume fraction

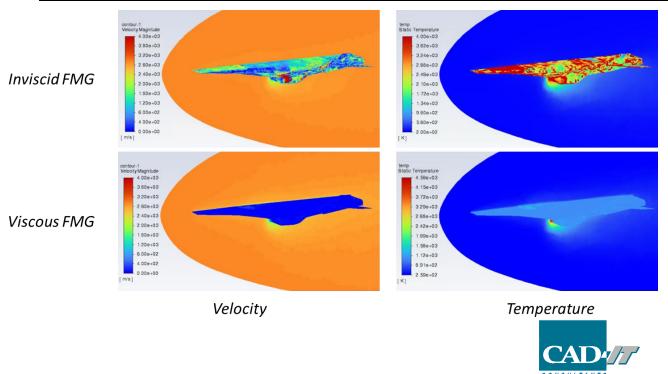


Hypersonics

Improved Prediction of Hypersonic Aerothermodynamics

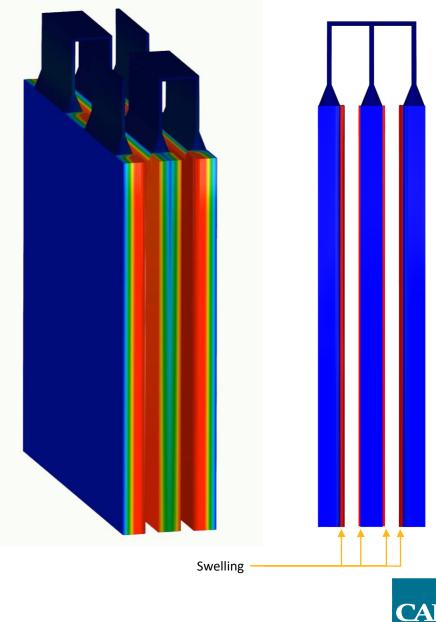
- New "Partially Catalytic Wall" Boundary Condition Type
 - Accounts for recombination of atoms near vehicle walls, which is common at hypersonic conditions
 - Improves predictions of species mixture composition due to reactions
 - Accurately predicts heat transfer to vehicle surface due to exothermic recombination reactions





Improved High-Speed Flow Robustness

- Improved numerical robustness for highspeed flows
 - Enhanced CASM for highly stretched meshes
 - Improved high-speed numerics to stabilize the solution
 - Better initialization using viscous FMG initializer
 - Improved stability for hypersonic flows with thermodynamic and chemical non-equilibrium


Battery

Electrochemistry-based Battery Swelling

Battery Swelling Model

- Accurately predict battery swelling during charging due to electrochemistry, pressure and swell-related material properties
- Swelling model couples Fluent's battery model and intrinsic fluid-structure interaction (FSI)
 - Battery model solves the electrode-level deformation
 - iFSI model solves the battery cell-level deformation

Battery Swelling Validation

- LG G5 cell phone battery
 - LiCO2 cathode/graphite anode
 - Anode: swell coefficient measured from experiment (~7%) ٠
 - Cathode: swell coefficient from literature (1.8%) ٠
 - Youngs Modulus of anode/separator/cathode = -46/50/56 MPa
- **Operating conditions** •
 - Constant C-rate discharge: 1/3 1.2
 - External pressure: 0-15 MPa (0%-3% elastic strain)

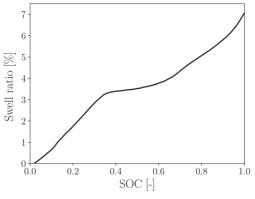
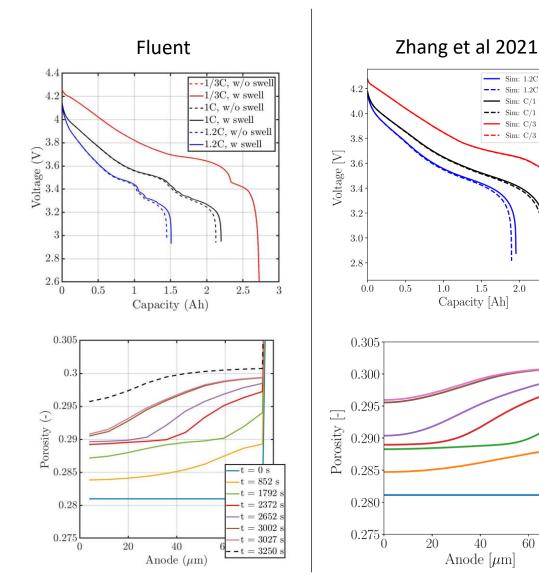



Figure 5. Measured thickness change ratio of LixC6 during the delithiation procedure for a pouch cell that has a graphite volume fraction of $61 \pm 1\%$.

Xiaoxuan Zhang et al 2021 J. Electrochem. Soc. 168 02053

60

80

Sim: 1.2C w. Mech

Sim: C/3 w. Mech

- Sim: C/3 w/o Mech

2.0

2

w/o Mech

C/1 w/o Mech

新科益工程仿真中心

咨询邮箱 : ansyssupport@cadit.com.cn 公司网址 : http://www.cadit.com.cn